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ABSTRACT Recently, there has been a rapid increase in the number of (small-cell) base stations (BSs)
to support the massive amount of mobile data traffic and rapidly increasing number of mobile devices in
beyond 5G (B5G) wireless communication systems or Internet of Things (IoT) networks. However, many
of these BSs tend to waste a considerable amount of energy to support such data traffic and mobile devices.
Therefore, the development of an efficient BS status control algorithm is important for realizing energy-
efficient IoT networks. To reduce network energy consumption, we herein propose a density clustering-based
BS control algorithm for energy-efficient IoT networks (DeCoNet). DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) and OPTICS (Ordering Points To Identify the Clustering Structure)
are utilized for partitioning high and low user-density regions. To find the effective number of BSs and their
appropriate locations considering user-density differences, we utilize parameters obtained after applying
density clustering algorithms to derive the thinning radius that is used to adjust the status of BSs in overall
cellular IoT networks. Specifically, the average reachability-distance of each cluster in OPTICS and the
distance between the outermost border users of each cluster in DBSCAN are used to obtain the radius of each
cluster region. Through extensive computer simulations, we show that the proposed algorithms outperform
the conventional algorithms in terms of average area throughput, energy efficiency, energy per information
bit, and power consumption per unit area.

INDEX TERMS Density clustering, ultra-dense network, energy efficiency, thinning algorithm, cellular IoT
networks, BS control.

I. INTRODUCTION
Future wireless networks such as the beyond fifth generation
5G (B5G) system or Internet of Things (IoT) system aim at
supporting the rapidly increasing number of mobile devices
and data traffic while reducing the network energy consump-
tion compared to the fourth generation (4G) networks [1].
The B5G system will essentially help to establish the IoT
as an indispensable part of our lives by setting up the foun-
dation for unleashing its full potential [2], [3]. To achieve
this goal, energy-efficient ultra-dense networks (UDNs) have
been widely regarded as one of the most promising solutions
for the future wireless networks [4]–[6]. In other words, base
stations (BSs) may be deployed more densely to support
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the massive amount of data traffic generated by the various
B5G convergence services such as smart factories, smart
cities, smart homes, drone deliveries, and autonomous driv-
ing. Accordingly, the average distance between users and BSs
is exponentially reducing, and therefore the link quality and
network capacity could be enhanced significantly. However,
this may result in severe interference among neighboring
BSs, ushering in a vast amount of energy waste in the entire
network [7]–[9]. Hence, reducing the network energy con-
sumption is one of the most challenging issues for realizing
UDNs in practice, particularly given that 80% of the energy
in mobile networks is consumed in BSs [10], [11].

To minimize the network energy consumption in UDNs,
a scheme to adjust the mode of BSs as (awake or
sleep) was proposed in [12]. Furthermore, in [13], poten-
tial gains and limitations of the UDNs were studied,
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which addressed the impact of idle-mode operation of
BSs, transmission power of BSs, user density, and user
distribution on the energy efficiency of UDNs. In [14],
a centralized on/off optimization technique was proposed by
using system-level simulations for heterogeneous networks.
In [15], a Markov decision process (MDP)-based optimal
wake-upmechanism for femto-cell BSs was proposed to min-
imize the energy consumption of heterogeneous networks,
and in [16], energy-efficient user association and power allo-
cation methods were proposed for mmWave-based UDNs
with energy-harvesting BSs. Furthermore, Z. Jian et al. pro-
posed a joint optimization framework for an energy-efficient
switching on/off strategy and user association policy in dense
cellular networks with partial conventional BSs in [17], and
traffic load distribution-based on/off scheduling algorithms
were proposed for energy-efficient delay-tolerant 5G net-
works in [18].

On the other hand, clustering techniques can be used
for improving the network energy efficiency in UDNs by
efficiently partitioning the BSs and users according to the
density, position, etc. In [19], Liang et al. proposed a
cluster-based energy-efficient resource allocation scheme for
UDNs to reduce interference and boost energy efficiency.
They utilized the k-means clustering algorithm to dynam-
ically adjust the number of BS-clusters based on the den-
sity of the BSs. Moreover, [20] used a modularity-based
user-centric clustering to decompose the UDNs into sev-
eral sub-networks by exploiting the inherent group struc-
ture of users. However, they did not consider the user
density for adjusting the modes of BSs in the UDNs.
In this paper, to further improve network energy efficiency,
we propose a novel density clustering-based BS control algo-
rithm for energy-efficient (ultra-dense) cellular IoT networks
(DeCoNet). DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) and OPTICS (Ordering Points To
Identify the Clustering Structure) are utilized for partitioning
the users in the proposed DeCoNet algorithms. Themain con-
tribution of this paper is to partition high and low user-density
regions to efficiently control the mode of BSs by using
DBSCAN and OPTICS algorithms. After extracting the high
user-density regions, a mobile network operator is able to
determine the number and location of BSs to be awakened.
The radii of the high user-density regions can be obtained by
using the parameters found through the results of DBSCAN
and OPTICS. We can find the thinning radius that is used to
adjust the status of the BSs based on the distance between the
outermost nodes in DBSCAN-based DeCoNet (D-DeCoNet)
and the reachability-distance in OPTICS-based DeCoNet
(O-DeCoNet). This paper also uses a thinning operation to
apply area-based BS control algorithms for energy-efficient
cellular IoT networks.

The rest of this paper is organized as follows. The Poisson
point process (PPP) and thinning operation are described
in Section II. Two density-based clustering algorithms
are introduced in Section II: DBSCAN and OPTICS.
In Section III, the proposed DeCoNet algorithms are

explained. Section IV shows the simulation results in terms
of the average area throughput, energy efficiency, energy
per information bit, and power consumption per unit area.
Finally, the conclusions are drawn in Section V.

II. PRELIMINARIES
A. POISSON POINT PROCESS (PPP) AND THINNING
OPERATION
In PPP, the cumulative density function (CDF, Fr (R)) of the
distance between the nearest serving BS and the user (r) can
be represented as [7], [21]

Fr (R) = P[Number of BSs closer than R]
= P[r ≤ R]
= 1− e−λBπR

2
. (1)

Here, λB represents the BS intensity of the two-dimensional
PPP defined in the specific space with a radius R. From
Eqn. (1), we can calculate the probability density func-
tion (PDF) of r in the homogeneous PPP (fr (r)) as

fr (r) = 2πλBr · e−λBπr
2
. (2)

In this paper, we denote the PDFs of r in the homogeneous
PPP andMatérn hard core point process (HCPP) as fr .p(r) and
fr .t (r), respectively. The thinning operation in the HCPP cre-
ates a group of new points by removing the points within the
thinning radius (rt ) on the basis of reference points among all
the original points generated by the homogeneous PPP. In this
study, the thinning operation removes the points according to
the following steps [7]:
• Step 1: Assign a random marked value (M) between
0 and 1 for all the points sampled by the PPP.

• Step 2: Find the points within rt on the basis of the
reference point, and remove the points with a smaller
marked value than the reference point.

• Step 3: Repeat Step 1 and Step 2 for all the points in the
entire network.

Accordingly, the intensity of the BS in the network is
altered, and the PDF of the distance r between the BS and the
user is also changed. In this case, the PDF of r after applying
the thinning operation can be approximated as [7], [23], [24]

fr .t (r) ≈ 2πrλB
1− e−λBπr

2
t

λBπr2t
e−λ

sA(r,rt ), (3)

where the intensity of the remaining BSs after the thinning
operation can be expressed as λB.t = (1− e−λBπr

2
t )/πr2t [7],

[25]–[27]. In Eqn. (3), λs is a unique value that matches the
sum of the PDF to 1. In addition, A(r, rt ) in Eqn. (3) can be
described as follows [7], [23]:

A(r, rt ) =


0 2r ≤ rt

πr2 + rt

√
r2 −

r2t
4

−(2 · arc sin
rt
2r
+arc cos

rt
2r

)× r2, 2r > rt

(4)
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N (ri) is the average number of users within the ith integration
region. The entire space S in the PPP can be quantized into
bins with bounds (ri − 1r/2, ri + 1r/2), where ri = r0 +
i ·1r for i ∈ Z+ [8]. Here, we assume that r0 is a clearance
region, where no user is located. Therefore, N (ri) of the ith
integration region, whose area is 2πri1r , can be expressed
as [7]–[9]

N (ri) =
∑
k

k ·
(λu2πri1r)k

k!
e−λu2πri1r , k ∈ Z+. (5)

Here, λu denotes the user intensity in PPP. From Eqns. (2)
and (5), we can calculate the total number of users within the
BS coverage area. Therefore, the number of users in the BS
coverage area (Nu.tot ) is approximately calculated as

Nu.tot =
∑
i

pr (ri) · N (ri), (6)

where the probability mass function pr (ri) can be calculated
as pr (ri) =

∫ ri+1r
ri−1r

fr (r)dr . In addition, in accordancewith [7]
and [22], the average number of users within the coverage
area of each BS (Nu.tot ) can be expressed as λu

λB
.

B. DENSITY-BASED CLUSTERING ALGORITHM
To achieve efficient control of a large number of BSs,
network operators might partition the entire network area
in accordance with active user density. Accordingly, user
density-based clustering algorithms could be utilized for net-
work partitioning. We herein introduce two of the represen-
tative clustering algorithms utilizing user density, namely,
DBSCAN and OPTICS. In general, density-based clustering
is used to extract regions having the desired user density or
a higher distribution of objects (data or points). Several key
terminologies used in the DBSCAN and OPTICS algorithms
are summarized as follows [28], [29].
• Directly density-reachable: When an object o has at
least MinPts of other objects (p1, p2, p3 . . .) within a
radius (ε), we assume that the objects p1, p2, and p3
are directly density-reachable from the object o. Here,
MinPts denotes the minimum number of objects to form
a dense region.

• Density-reachable: Assume that the objects p1, p2, and
p3 are directly density-reachable from o1, and q1, q2,
and q3 are directly density-reachable from o2. If the
core objects o1 and o2 are directly density-reachable,
we assume that q1, q2, and q3 are density-reachable
from o1.

• Density-connected: If the objects p and q are
density-reachable from object o, we assume that the
objects p and q are density-connected.

1) DBSCAN
DBSCAN creates several clusters of indefinite shape accord-
ing to the density of the neighboring objects. In DBSCAN,
there exist three kinds of objects, namely, a core object,
a border object, and an outlier object [28]. The descriptions
for these nodes are as follows.

FIGURE 1. DBSCAN operation procedure with radius ε when MinPts = 3.

FIGURE 2. Core-distance and reachability-distance in OPTICS.

• Core object: When an object o has at least MinPts of
other objects (p1, p2, p3 . . .) within ε, the point o is a
core object. In Fig. 1, the objects o1, o2, and o3 are the
core objects.

• Border object:As shown in Fig. 1, the objects b1 and b2
are not core objects but are within ε of any core object.
These objects are assumed to be border objects.

• Outlier object: The objects n1 and n2 in Fig. 1 do not
satisfy the requirements of core object or border object.
These objects are assumed to be outlier objects.

Fig. 1 shows the operation procedure of DBSCAN when
MinPts = 3. Objects o1, o2, and o3 are core objects because
they have more thanMinPts objects within a radius (ε). Basi-
cally, the core objects form a cluster. Thus, density-reachable
objects from the core object are merged into a cluster. That
is, the objects o1, o2, and o3 form a cluster. Furthermore,
the border objects belong to the cluster composed of directly
density-reachable objects from the core object. Hence, b1
belongs to the cluster formed by o1, and b2 belongs to the
cluster formed by o3, as shown in Fig. 1. The outlier objects
n1 and n2 are excluded from forming clusters because they
are not density-reachable or density-connected.

2) OPTICS
OPTICS defines the MinPts-distance of an object p,
core-distance (CD) of an object p, and reachability-
distance (RD) of an object p with respect to an object o [29].
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Here, MinPts-distance represents the distance from p to its
MinPts’ neighbors, and usually this MinPts-distance is the
same as the CD when the ε-neighborhood of p is greater than
MinPts. The CD of p can be defined as

CD(p) =


Undefined, ε-neighborhood(p)

< MinPts
Minpts− distance(p), otherwise.

(7)

The reachability-distance of an object p with respect to
another object o is the smallest distance such that p is
directly density-reachable from the core object o. That is,
according to the definition, the reachability-distance cannot
be smaller than the core-distance. The reachability-distance
can be defined as

RD(p, o) =


Undefined, ε-neighborhood(p)

< MinPts
max(CD(o), dist(o, p)) otherwise.

(8)

Fig. 2 shows an example of the core-distance (CD(o))
and the reachability-distance (RD(p1, o),RD(p2, o)) when
MinPts = 5. Accordingly, OPTICS can efficiently extract the
boundaries of each cluster in the entire network area by using
the reachability-distance plot [29].

III. DeCoNet: PROPOSED DENSITY CLUSTERING-BASED
BS CONTROL ALGORITHM
In the proposed DeCoNet algorithm, the entire network is
divided into several subnetworks, and the status of each
BS is determined according to the condition of each sub-
network. To partition the entire network, the users can
be classified using the density-based clustering algorithms
such as DBSCAN and OPTICS, described in Sec.II-B1 and
Sec.II-B2, respectively. As a result, each cluster formed by
the clustering algorithms is mapped to each subnetwork. Each
subnetwork obtains the thinning radius (rt ) based on the clus-
tering results (the number of users and a cluster radius (rc))
for determining the awake/sleep mode of the BS. The pro-
posed DeCoNet algorithm for improving energy efficiency in
ultra-dense IoT networks performs the following procedures.

As shown in Step 1 in Algorithm 1, BSs and users are
generated within the entire network area with λB and λLu ,
where λB and λLu denote the intensities of the BSs and users
in the low-density area, respectively. To model crowded net-
work environments such as a stadium or a shopping mall,
high user-density regions are randomly distributed within the
entire network area, and the users in the high-density region
are generated with λHu , as shown in Step 2. The density-based
user clustering algorithm (DBSCAN or OPTICS) divides
the entire network into multiple subnetworks. Network area
partitioning is performed to determine the number of BSs
that need to be awake in each subnetwork. In other words,
OPTICS and DBSCAN extract the dense areas in the entire
network area to control the BSs according to the number

of active users for improving the network energy efficiency
while minimizing the cell throughput degradation.

In Step 3, the users are partitioned using OPTICS in
O-DeCoNet and DBSCAN in D-DeCoNet. That is, the sub-
networks are extracted using density-based clustering algo-
rithms. In Algorithm 1, Option 1 represents the steps to
extract subnetworks in O-DeCoNet. In Step 3.1, each user
calculates the MinPts-distance to find the core-distance
(CDi∈Su ) of itself. Then, O-DeCoNet randomly selects the
first user i in Su and defines new sets SSEED = Su and
SORDER = ∅. After comparing Dist(i, j)j∈j6=iSu with CDi,
the larger value will be set to a temporary-value TVk for
all k in Step 3.3. Here, Dist(i, j)j∈j6=iSu denotes the dis-
tance between the i-th user and other users in Su. In Step
3.4, O-DeCoNet compares the current reachability-distance
(RDk ) with the temporary-value (TVk ) and sets the smaller
value as the final reachability-distance (RDk ) for all k . Then,
user i is removed from SSEED and added to SORDER in Step
3.5. In Step 3.6, the user i with the smallest RD is determined
as the next i, and the steps from 3.3 to 3.6 are repeated until
SSEED becomes empty. The point j+1 satisfying RDSORDER

j ×

(1 − ξ ) ≥ RDSORDER
j+1 becomes the start point of the cluster i,

Si,startu , and the point k satisfying RDSORDER
k ≤ RDSORDER

k+1 ×

(1− ξ ) becomes the end point of the cluster i, Si,endu . In Step
3.8, if k - j ≥MinPts, all successive users between Si,startu and
Si,endu form a new cluster. Particularly in OPTICS, the size of
the extracted high user-density regions can be controlled by
the parameter ξ . For example, if we strictly set the value of ξ ,
the area throughput of O-DeCoNet could be smaller but the
energy efficiency of O-DeCoNet could be higher, and vice
versa.

Option 2 represents how to extract subnetworks in
D-DeCoNet. In Step 3.1, when user i has at least MinPts
of other users within ε, the user i is set as ‘core user’
for all i. If a certain core user i is located within ε of
another core user j, then the users i and j are set as ‘density-
connected’ users in Step 3.2. The D-DeCoNet extracts these
density-connected users into a cluster. In Step 3.4, the users
who do not satisfy the condition of a core user but are within
ε of another core user are set as border users. The border
users (Si,bu ) are also included in the same cluster (i) with these
core users in Step 3.5. After applying density-based cluster-
ing algorithms, unique output parameters can be obtained.
In OPTICS, RD and CD for each user are obtained. Further-
more, in DBSCAN, the type of user (core, border, outlier)
is determined. Fig. 5 shows an example of an RD plot in
O-DeCoNet.

After clustering the users with RDi in OPTICS and the
distance between the outermost border users in DBSCAN,
the proposed DeCoNet algorithm can find the radius of each
cluster (rc). In O-DeCoNet, we can find that RD values of
each cluster are similar. This finding means that the average
RD value for each cluster could be the radius of the cluster
region. Consequently, we can obtain rc by averaging all the
RD values in each cluster. In addition, rc can be calculated
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Algorithm 1 Operation Procedures of O-DeCoNet and D-DeCoNet
[Network configuration for BSs and users]
1: Step 1. The sets of BSs (SB) and users (Su) are generated by the Poisson point process with λB and λLu . Here, λ

L
u is the

intensity of the Poisson point process for the lower user-density area.
2: Step 2. The higher user-density areas are generated by the Poisson cluster process with λHu , and these areas are randomly

located in the entire network area. The size of the entire network is 1km2.
3: Step 3. Apply a density-based clustering algorithm for constructing the subnetworks with O-DeCoNet or D-DeCoNet.

[Option 1: O-DeCoNet - OPTICS based BS control algorithm]
4: Step 3.1. Every user calculates theMinPts-distance for finding CDi∈Su .
5: Step 3.2. Randomly select the first user i in Su, and define SSEED = Su and SORDER = ∅.
6: Step 3.3. Compare Dist(i, j)j∈j6=iSu with CDi, where Dist(i, j)j∈j6=iSu is the distance between i and other users in Su.

The larger value will be set to TVk , where k is all users.
7: Step 3.4. Compare the current RDk with TVk and set the smaller value as the final RDk for all k .
8: Step 3.5. Remove i from SSEED and add it to SORDER.
9: Step 3.6. The user i with the smallest RD is determined as the next i, and the steps from 3.3 to 3.6 are repeated until

SSEED becomes empty.
10: Step 3.7. Find Si,startu satisfying RDSORDER

j × (1− ξ ) ≥ RDSORDER
j+1 , and Si,endu satisfying RDSORDER

k ≤ RDSORDER
k+1 × (1− ξ ).

11: Step 3.8. If k - j ≥ MinPts, all successive users between Si,startu and Si,endu form a new cluster..
[Option 2: D-DeCoNet - DBSCAN based BS control algorithm]

12: Step 3.1. When user i has at leastMinPts of other users within ε, the user i is set as ‘core user’ for all i.
13: Step 3.2. If a certain core user i is within ε of another core user j, these users are set as ‘density-connected’ users.
14: Step 3.3. The density-connected users are extracted into a cluster.
15: Step 3.4. The users not satisfying the condition of core user but are within ε of another core user are set as border users.

16: Step 3.5. The border users (Si,bu ) are also included in the same cluster (i) with these core users.
[Thinning radius (rt ) calculation and mode control of BSs]
17: Step 4. To calculate r ic, O-DeCoNet uses the average value of RDSi,startu _to_Si,endu

of the ith cluster, and D-DeCoNet uses the
distance between (Si,bu ) in the ith cluster.

18: Step 5. r it can be expressed as r it =
√

(r ic)2

N i,awake
B

, where N i,awake
B =

Card(Siu)
µB

. Here, Card is the size of the set.

19: Step 6. Based on the calculated r it , the modes of neighboring BSs within a distance of r it from the specific BS are changed
from awake to sleep in cluster i. Here, the specific BS is randomly chosen among the awake BSs.

20: Step 7. Steps 4 to 6 are repeated for all clusters.

using the distance between the outermost border users in
D-DeCoNet. In O-DeCoNet and D-DeCoNet, the radius of
a cluster i (r ic) can be obtained as

r ic =


Si,endu∑

k=Si,startu

RDk
Card(Siu)

in O-DeCoNet,

argj,k∈Si,bu max
Dist(j, k)

2
in D-DeCoNet.

(9)

In Eqn. (9), Card(Siu) indicates the number of users in cluster
i. The terms Si,startu and Si,endu indicate the order of the start-
and end-user of cluster i, respectively, where order is a unique
number of a user belonging to each cluster in the RD plot.

Therefore, the thinning radius of the cluster i (r it ) for con-
trolling the modes of BSs can be calculated as

r it =

√
(r ic)2

N i,awake
B

where N i,awake
B =

Card(Siu)
µB

. (10)

In Eqn. (10), the number of BSs that need to be awakened
(N i,awake

B ) can be derived by dividing Card(Siu) by µB. Here,
Card(Siu) is the number of users included in the cluster i,
and µB is the capacity of the BS. The capacity of the BS
is the number of users that can be supported through the
BS. In Step 6 in Algorithm 1, with the r it by Eqn. (10),
the modes of neighboring BSs within a distance of r it from the
specific BS are changed from awake to sleep in the cluster i.
A different value of rt could be applied for each subnetwork
in accordance with the user density. A block diagram of the
proposed DeCoNet algorithm is shown in Fig.3.

In Fig. 4, there are three clustered areas and one non-
clustered area. Therefore, we finally have four subnetworks
that have different user densities. The thinning process of
the proposed DeCoNet algorithm is shown in Fig. 4. Here,
there are three kinds of users, namely, a core user, a border
user, and an outlier user. The core and border users are those
users included in each cluster, while the outlier users are the
nonclustered users. One of the border users can be considered
as the outermost user to determine the size of each cluster

VOLUME 8, 2020 120885



W. Lee et al.: DeCoNet: Density Clustering-Based BS Control for Energy-Efficient Cellular IoT Networks

FIGURE 3. Block diagram of the proposed DeCoNet algorithm.

in the D-DeCoNet algorithm. After calculating rt based on
rc according to Step 5, the BSs satisfying the condition of
Dist(o, i) < rt are changed into the sleep mode.

IV. SIMULATION RESULTS AND DISCUSSION
A. SIMULATION ENVIRONMENTS
The total network size is 1 km2 and the number of high
user-density areas is assumed as 3. The capacity of each
BS is 100. Thus, each BS is able to support a maxi-
mum of 100 users. Depending on the type of the proposed
DeCoNet algorithm (O-DeCoNet, D-DeCoNet), the sizes of
the subnetworks could be different. For performance com-
parison, we consider two conventional algorithms, namely,
the ACEnet algorithm [7] and the always-awake (AA) algo-
rithm. In ACEnet, the BS mode control is performed accord-
ing to the user density of the entire network. This algorithm
does not consider the difference in user density for each unit
area. Furthermore, in the AA algorithm, the status of every
BS must always be awake regardless of the user density and
status.

We consider fixed and random locations of the high
user-density areas in the simulations. The user density of the
high-density area and low-density area are λHu = 4 ∼ 30 ×
103 and λLu = 1× 103, respectively. If we assume the radius
of a high-density area as 100 m, the connection density of
this area becomes approximately 0.95 user/m2. This value is
almost the same as the target value of the connection density
in IMT-2020, 1 user/m2 [1]. The BS density (λB) is 0.1×103,
and the transmission power of the BS is 0.25 W. The details
of the simulation parameters are shown in Table. 1.

TABLE 1. Simulation parameters.

B. PERFORMANCE METRICS
To evaluate the performance of the proposed (O-DeCoNet
and D-DeCoNet) and conventional (ACEnet and AA) algo-
rithms under various network conditions, we consider four
performancemetrics, namely, energy per information bit (ηI ),
power per area unit (ηA), area throughput (TA), and energy
efficiency (ηE ). Here, ηI and ηA are utilized to evaluate
the energy efficiency at the network level of the UDN
environment where the BSs and the users are densely
distributed [30], [31].

The unit of ηI is W/bps, and this metric is known to be
suitable for the performance evaluation of urban environ-
ments. The unit of ηA is W/km2, and this metric is widely
utilized for the performance evaluation of suburban and rural
environments. Moreover, ηI and ηA are represented as

ηI =

∑
i∈SawakeB

PB(i)∑
i∈SawakeB

∑
j∈Su,j Blog(1+ γ

i
j )

[W/bps],

ηA =

∑
i∈SawakeB

PB(i)∑
i∈SawakeB

χB(i)
[W/km2]. (11)

Here, γ ij is the signal-to-interference-plus-noise ratio (SINR)
of user j against BS i, and PB can be obtained by calculating
the total amount of power consumed by the BS as follows:
(PB = (1/σ ) · Ptx + Pc + Po). In this equation, σ is the
amplification efficiency and Ptx is the transmission power of
the BS. Pc and Po denote the power consumed by the circuit
and the power consumed in the standby state, respectively.
Furthermore, χB is the size of each BS area formed by
Voronoi tessellation.

In addition, TA and ηE can be calculated as

TA =

∑
i∈SawakeB

∑
j∈Su,j Blog(1+ γ

i
j )∑

i∈SawakeB
χB(i)

[bps/km2],

ηE =

∑
i∈SawakeB

∑
j∈Su,j Blog(1+ γ

i
j )∑

i∈SawakeB
PB(i)

[bit/J]. (12)
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FIGURE 4. Density-based user clustering for creating subnetworks (left); Thinning-based BS status
adjustment (right).

FIGURE 5. Example of RD plot in O-DeCoNet.

C. SIMULATION RESULTS
Fig. 6 shows the results of the number of users included in
each cluster after applying the clustering algorithms, OPTICS
and DBSCAN. The results of D-DeCoNet are well matched
with the user density of the high user-density area. On the
other hand, O-DeCoNet obtains a relatively lower value than
that of D-DeCoNet because the cluster points are excluded
in the reachability-distance plot corresponding to the param-
eter of OPTICS (ξ ). Here, ξ is a steepness parameter to
extract clusters as described in Step 3.7 in Algorithm 1. In a
reachability-distance plot, the user i+1 satisfying RDi× (1−
ξ ) ≥ RDi+1 becomes the start point of a cluster, and the user j
satisfyingRDj ≤ RDj+1×(1−ξ ) becomes the end point of the
cluster. All successive points between the start point i+1 and
the end point j form a cluster. The number of users belonging
to each cluster could vary by the steepness parameter ξ .
That is, O-DeCoNet would create relatively small clusters
compared to D-DeCoNet. This reduces the utilization of BSs
in the high user-density areas. Accordingly, D-DeCoNet has
the highest throughput among these algorithms.

Fig.7 shows the simulation results with respect to the area
throughput, energy efficiency, energy per information bit, and
power per area unit of O-DeCoNet, D-DeCoNet, ACEnet,

FIGURE 6. Average number of users in each cluster; random
deployment (up) and fixed deployment (down).

and AA in the case of fixed deployment of high user-density
areas. Fig. 7(a) shows the area throughput according to the
average number of users in high user-density areas. The
proposed O-DeCoNet and D-DeCoNet algorithms perform
thinning operations to put the neighboring BSs into sleep
mode depending on the user density. Consequently, the total
amount of interference generated by the neighboring BSs
can be reduced because of these mode changes. These find-
ings indicate the throughput improvement of the proposed
O-DeCoNet and D-DeCoNet algorithms. In O-DeCoNet and
D-DeCoNet, the BS mode control algorithm is adaptively
utilized according to the active user density because the
subnetworks are constructed using density-based cluster-
ing algorithms such as OPTICS and DBSCAN. Therefore,
the proposed algorithms outperform the conventional AA
and ACEnet algorithms with respect to the area throughput.
Moreover, ACEnet has the smallest TA because this algo-
rithm does not consider the difference in the user density in
the entire network. Furthermore, the AA algorithm causes a
severe interference problem because all the BSs in the entire
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FIGURE 7. Area throughput, energy efficiency, energy per information bit, and power per area unit of O-DeCoNet, D-DeCoNet, ACEnet, and AA in the
case of fixed placement of high user-density areas.

network are always kept in the awake state. The reason for
the slight performance difference between O-DeCoNet and
D-DeCoNet is the difference in the shape of the clusters
formed by each clustering algorithm.

Fig. 7(b) shows the energy efficiency according to the
average number of users in high user-density areas. Because
ACEnet does not consider the user distribution, this algorithm
has an energy wastage problem in low-density areas. It causes
performance degradation in terms of energy efficiency. Due
to similar reasons, the AA algorithm has the lowest energy
efficiency among these algorithms. On the other hand,
because the proposed O-DeCoNet and D-DeCoNet algo-
rithms control the BSs adaptively considering the user density
by area, these algorithms achieve better performance than the
conventional ACEnet and AA algorithms. The difference in
cluster shape in the high user-density areas causes a slight
difference in ηE , as shown in Fig. 7(b). Fig. 7(d) shows the
power per area unit according to the average number of users

in high user-density areas. From this figure, we can find the
total power consumed by the BSs. In the AA algorithm, all
the BSs are always kept in the awake mode because there is
no thinning algorithm. In this algorithm, the total amount of
power consumed in the BSs does not change regardless of
the change in the user density. In addition, O-DeCoNet and
D-DeCoNet have lower energy efficiency when the number
of users in a high user-density area is 4K compared to the case
of 2K . This occurs because the relative increment ratio of the
throughput in the case of 2K is larger than the decrement ratio
of the amount of saved power due to the BS mode changes
compared to the case of 4K .

On the other hand, O-DeCoNet, D-DeCoNet, and ACEnet
utilize the thinning operation to adjust the status of BSs
in consideration of the user density. However, because the
ACEnet algorithm does not partition the areas according to
the user density, ηA increases continuously until it reaches
the ηA of the AA algorithm. That is, the total number of users
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FIGURE 8. Area throughput, energy efficiency, energy per information bit, and power per area unit of O-DeCoNet, D-DeCoNet, ACEnet, and AA in the
case of random placement of high user-density areas.

is 90.5K, and the number of users in each high user-density
area is 30K; the ηA of ACEnet is almost the same as the ηA
of AA. In addition, when the number of users in the high
user-density area becomes 4K, all the BSs in this area should
become awake. Accordingly, from this point, ηA saturations
occur in the O-DeCoNet and D-DeCoNet algorithms. We can
observe a similar performance tendency in Fig.7(c). Figs. 7(c)
and 7(d) show that the proposed DeCoNet algorithms have
significant advantages in terms of power consumption.

Fig.8 shows the simulation results with respect to the area
throughput, energy efficiency, energy per information bit, and
power per area unit of O-DeCoNet, D-DeCoNet, ACEnet, and
AA when the high user-density areas are randomly deployed.
The AA and ACEnet algorithms exhibit similar performance
regardless of the placement of the high user-density areas.
As shown in Fig. 8(a), the area throughput of the proposed
DeCoNet algorithms in the case of random deployment of
high user-density areas is smaller than that of the proposed

DeCoNet algorithms in the case of fixed deployment of high
user-density areas. This is the reason why the inter-distance
between high user-density areas in the case of randomdeploy-
ment could be less than that in the case of fixed deployment.
That is, relatively more severe interference can be generated
from adjacent BSs in the case of random deployment.

From the reachability-distance plot of the proposed
O-DeCoNet algorithm, it can be seen that when the
inter-distance between the start point and end point of the
cluster decreases, the size of the cluster also decreases.
Accordingly, the number of BSs that need to be awake in
this cluster could decrease. Consequently, the area throughput
in Fig. 8(a) is relatively small compared to that in Fig. 7(a).
That is, as the awake BSs become closer, the interference
generated by the users included in these awake BSs could
increase. Therefore, the gap of ηA between O-DeCoNet
and D-DeCoNet in Fig. 8(d) is decreased compared to that
in Fig. 7(d). On the other hand, the gap of ηE between
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O-DeCoNet and D-DeCoNet increases from ×1.0345
to ×1.0975.

V. CONCLUSIONS
To improve the energy efficiency in ultra-dense cellular
IoT networks, we proposed two novel DeCoNet algorithms:
OPTICS-based DeCoNet and DBSCAN-based DeCoNet.
To consider the difference in the user density per area, we par-
titioned the entire network into several subnetworks. After
partitioning, we exploited thinning operations to determine
the status of the BSs. The thinning radii that were required to
adjust the status of the BSs were calculated from the distance
between the outermost nodes in the case of D-DeCoNet and
the reachability-distance in the case of O-DeCoNet. Through
extensive computer simulations, we showed that the proposed
O-DeCoNet and D-DeCoNet algorithms outperform the con-
ventional ACEnet andAA algorithms in terms of average area
throughput, energy efficiency, energy per information bit, and
power consumption per unit area in the case of fixed and
random placements of high user-density areas.
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